A Flexible Route to Chiral 2-*endo***-Substituted 9-Oxabispidines and Their Application in the Enantioselective Oxidation of Secondary Alcohols**

Matthias Breuning,* Melanie Steiner, Christian Mehler, Alexander Paasche, and David Hein

Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wu¨rzburg, Germany

breuning@chemie.uni-wuerzburg.de

*Recei*V*ed October 29, 2008*

A new and flexible route to enantiomerically pure bi- and tricyclic 9-oxabispidines has been developed with use of (1*R*,5*S*)-7-methyl-2-oxo-9-oxa-3,7-diazabicyclo[3.3.1]nonane-3-carboxylic acid *tert*-butyl ester as the common late-stage intermediate. The 9-oxabispidines synthesized were evaluated as the chiral ligands in the Pd(II)-catalyzed oxidative kinetic resolution of secondary alcohols giving good to excellent selectivity factors of up to 19.

The lupine alkaloid $(-)$ -sparteine $(1,$ Figure 1) belongs to the privileged ligands in asymmetric synthesis. It is, for example, the unrivalled chiral auxiliary of choice in almost all enantioselective deprotonation/electrophilic trapping reactions of weakly C-H acidic compounds using strong organolithium bases such as *s*-BuLi.¹ The extraordinary complexation properties of **1** are, however, not restricted to lithium organyls; highly enantioselective transformations have also been realized in combination with other metals.² Particular attention was at-

(2) For some examples, see: (a) Shintani, R.; Fu, G. C. *Angew. Chem., Int. Ed.* **2002**, *41*, 1057. (b) Sorger, K.; Petersen, H.; Stohrer, J. U.S. Patent 6924386, 2005. (c) Maheswaran, H.; Prasanth, K. L.; Krishna, G. G.; Ravikumar, K.; Sridhar, B.; Kantam, M. L. *Chem. Commun.* **2006**, 4066.

FIGURE 1. Chiral (9-oxa)bispidines and the key intermediate **8**.

tributed to the $(-)$ -sparteine/Pd(II)-catalyzed oxidative kinetic resolution of secondary alcohols developed by Stoltz and Sigman. $3-6$

Structurally simpler derivatives of **1** that also possess a chirally modified bispidine (3,7-diazabicyclo[3.3.1]nonane) core of type **2** are rare since their total synthesis is still a challenging and laborious task.⁷⁻⁹ The only exception is given by the tricyclic bispidine **3**, which is available in 3 steps from the natural product (-)-cytisine (4).^{10,11} Diamine **3** found application as a surrogate for the less readily available (+)-sparteine enantiomer, *ent*-**1**. 10,12

Our search for novel sparteine substitutes focuses on the structurally closely related, but only poorly investigated¹³ 9-oxabispidines of type **5**. Their cage-like architectures are comparable to those of the well-known bispidines, 14 thus giving rise to excellent properties as chiral ligands in asymmetric

(5) Nielsen, R. J.; Keith, J. M.; Stoltz, B. M.; Goddard, W. A., III *J. Am. Chem. Soc.* **2004**, *126*, 7967.

(6) Ebner, D. C.; Trend, R. M.; Genet, C.; McGrath, M. J.; O'Brien, P.; Stoltz, B. M. *Angew. Chem., Int. Ed.* **2008**, *47*, 6367.

(7) Enantioselective synthesis of **3**: (a) Danieli, B.; Lesma, G.; Passarella, D.; Piacenti, P.; Sacchetti, A.; Silvani, A.; Virdis, A. *Tetrahedron Lett.* **2002**, *43*, 7155. (b) Danieli, B.; Lesma, G.; Passarella, D.; Sacchetti, A.; Silvani, A. *Tetrahedron Lett.* **2005**, *46*, 7121. (c) Hermet, J.-P. R.; Viterisi, A.; Wright, J. M.; McGrath, M. J.; O'Brien, P.; Whitwood, A. C.; Gilday, J. *Org. Biomol. Chem.* **2007**, *5*, 3614.

(8) Enantioselective synthesis of **1** or *ent*-**1**: (a) Smith, B. T.; Wendt, J. A.; Aube´, J. *Org. Lett.* **2002**, *4*, 2577. (b) Hermet, J.-P. R.; McGrath, M. J.; O'Brien, P.; Porter, D. W.; Gilday, J. *Chem. Commun.* **2004**, 1830.

(9) Stereoselective synthesis of other bispidines possessing a chirally modified core: (a) Phuan, P.-W.; Ianni, J. C.; Kozlowski, M. C. *J. Am. Chem. Soc.* **2004**, *126*, 15473. (b) Chau, F. H. V.; Corey, E. J. *Tetrahedron Lett.* **2006**, *47*, 2581. (c) Breuning, M.; Hein, D. *Tetrahedron: Asymmetry* **2007**, *18*, 1410.

(10) (a) Dixon, A. J.; McGrath, M. J.; O'Brien, P. *Org. Synth.* **2006**, *83*, 141. (b) O'Brien, P. *Chem. Commun.* **2008**, 655.

(11) Synthesis of *N*-alkyl derivatives of **3** from **4**: (a) Dearden, M. J.; McGrath, M. J.; O'Brien, P. *J. Org. Chem.* **2004**, *69*, 5789. (b) Genet, C.; McGrath, M. J.; O'Brien, P. *Org. Biomol. Chem.* **2006**, *4*, 1376. (c) Wilkinson, J. A.; Rossington, S. B.; Ducki, S.; Leonard, J.; Hussain, N. *Tetrahedron* **2006**, *62*, 1833. (d) Johansson, M. J.; Schwartz, L. O.; Amedjkouh, M.; Kann, N. C. *Eur. J. Org. Chem.* **2004**, 1894. (e) Johansson, M. J.; Schwartz, L.; Amedjkouh, M.; Kann, N. *Tetrahedron: Asymmetry* **2004**, *15*, 3531.

(12) *ent*-**1** is accessible from the naturally occurring alkaloid *rac*-lupanine (*rac*-10-oxosparteine) by reduction and resolution: Ebner, T.; Eichelbaum, M.; Fischer, P.; Meese, C. O. *Arch. Pharm. (Weinheim)* **1989**, *322*, 399.

(13) There is a single lecture abstract, in which an enantioselective route to **6** and some other bicyclic 9-oxabispidines of type **5** is sketched. However, no yields or characterization data are given, see: Gill, D. M.; Holness, H.; Keegan, P. S. *Abstracts of Papers*, 232nd ACS National Meeting, San Francisco, CA; American Chemical Society: Washington, DC, 2006.

(14) Comba, P.; Kerscher, M.; Schiek, W. *Prog. Inorg. Chem.* **2007**, *55*, 613.

^{(1) (}a) Hoppe, D.; Hintze, F.; Tebben, P.; Paetow, M.; Ahrens, H.; Schwerdtfeger, J.; Sommerfeld, P.; Haller, J.; Guarnieri, W.; Kolczewksi, S.; Hense, T.; Hoppe, I. *Pure Appl. Chem.* **1994**, *66*, 1479. (b) Hoppe, D.; Hense, T. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 2282. (c) Clayden, J. *Organolithiums: Selecti*V*ity for Synthesis*; Pergamon: New York, 2002. (d) Hodgson, D. M. *Topics in Organometallic Chemistry*; Springer: Berlin, Germany, 2003; Vol. 5. (e) Gawley, R. E.; Coldham, I. In *The Chemistry of Organolithium Compounds*; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, UK, 2004; p 997. (f) Hoppe, D.; Christoph, G. In *The Chemistry of Organolithium Compounds*; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, UK, 2004; p 1055. (g) Chuzel, O.; Riant, O. In *Topics in Organometallic Chemistry*; Lemaire, M., Mangeney, P., Eds.; Springer: Berlin, Germany, 2005; Vol. 15, p 59.

^{(3) (}a) Ferreira, E. M.; Stoltz, B. M. *J. Am. Chem. Soc.* **2001**, *123*, 7725. (b) Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. *Org. Lett.* **2003**, *5*, 835. (c) Bagdanoff, J. T.; Stoltz, B. M. *Angew. Chem., Int. Ed.* **2004**, *43*, 353. (d) Caspi, D. D.; Ebner, D. C.; Bagdanoff, J. T.; Stoltz, B. M. *Ad*V*. Synth. Catal.* **²⁰⁰⁴**, *346*, 185.

^{(4) (}a) Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. *J. Am. Chem. Soc.* **2001**, *123*, 7475. (b) Mandal, S. K.; Sigman, M. S. *J. Org. Chem.* **2003**, *68*, 7535.

SCHEME 1. Synthesis of the Key Intermediate 8 from 9 and 11

synthesis. With the methylene bridge in **2** being replaced by an ether function, the 9-oxabispidines **5** are often more easily accessible than the corresponding bispidines. This has recently been demonstrated in our group by the enantioselective preparation of a set of bicyclic 2-*endo*-phenyl-substituted derivatives $(5, R = Ph; R¹, R² = H, Me, Bn)$ from commercially available
(*R R*)-phenylglycidol (3–5 steps 35–41% yield)¹⁵ A first (R, R) -phenylglycidol (3-5 steps, 35-41% yield).¹⁵ A first asymmetric synthesis of the tricyclic 9-oxabispidine **6** was successfully accomplished, too.¹⁶

One major problem, inherent to all known syntheses of bispidines and 9-oxabispidines, still remained unsolved: a latestage variation of the appendage at C-2 is not possible since this part of the molecule (or a precursor to it) is usually constructed in the very beginning.^{$7-9$} The missing synthetic flexibility in the southern hemisphere, which plays the decisive role in the chirality transfer, severely hampers more in-depth structure-selectivity investigations.

Herein we disclose a first solution to this problem by using the *N*-Boc-9-oxabispidin-2-one **8** as a common, late-stage intermediate. This imide, available in 7 steps by two different routes, was converted in just $4-5$ steps and $35-47\%$ yield into the bicyclic, 2-*endo*-substituted 9-oxabispidines **7a** and **7b** and the tricycle **6**. The potential of these diamines in the oxidative kinetic resolution of secondary alcohols was studied.

Two conceptually different approaches have been realized for the enantioselective synthesis of the key intermediate **8**. Route 1 (Scheme 1) commenced with methyl glycidate (**9**), which was treated with *p*-methoxybenzylamine to afford the amide **10** in 99% yield. The morpholine **13** was prepared following a multistep one-pot sequence developed earlier on related cyclizations of β -amino alcohols¹⁷ and 3-amino-1,2diols.15,16 Heating of **10** with (*R*)-epichlorohydrin (**11**) in the presence of LiClO4 induced a highly regioselective ring opening of the epoxide at C-3 to give a chlorohydrin intermediate, which, upon addition of KO*t*Bu, underwent an intramolecular cyclization to provide **12**. Nucleophilic attack of the hydroxy group at the epoxide function and mesylation delivered **13** as a 52:48 mixture of epimers at C-2 in 31% yield. KO*t*Bu-induced ring closure of **13**, which involved an isomerization of the trans-

SCHEME 3. Preparation of the Bicyclic 9-Oxabispidines 7a,b from 8

epimer to the cis-configured derivative, gave the chiral 9-oxabispidine 14 in excellent 95% yield.¹⁸ Hydrogenolytic removal of the northern PMB group, *N*-alkylation, and MsOH-induced cleavage of the amidic PMB substituent delivered the lactam **15**, which was converted into the key intermediate **8** by treatment with Boc₂O in pyridine. This route, in which the chiral, 1,2-bis-electrophilic C-3 building block **11** was used, afforded **8** in overall 7 steps and 12% yield.

The second approach (Scheme 2) started with the known acid **16**, available in a single step from ethyl 2,3-dibromopropanoate.19 Activation of **16** as the acid chloride, amide formation with (*R*)-3-aminopropane-1,2-diol (**17**), and ring closure under basic conditions afforded the morpholin-3-one **18** as a 67:33 mixture of the epimers at C-2 in 48% yield. *O*-Debenzylation and mesylation of the two hydroxy groups provided **19** in 76% yield and set the stage for the cyclization with methylamine, which delivered the desired 9-oxabispidin-2-one **15** in 33% yield. As a byproduct, the α , β -unsaturated morpholin-2-one **20** was obtained in 34% yield. The final conversion of **15** into **8** is shown in Scheme 1. Compared to route 1, this 7-step approach is based on the chiral, 1,2-bis-nucleophilic C-3 building block **17** giving **8** in slightly lower 9% overall yield, but offers the advantage of more convenient reaction procedures.

The transformation of the key intermediate **8** into the 2-*endo*substituted 9-oxabispidines was straightforward (Scheme 3). The bicyclic ethyl derivative **7a** was obtained in 44% yield by using a 4-step protocol:20 Treatment of **8** with EtMgBr resulted in a clean monoaddition at the *N*-acyl moiety of the unsymmetric imide function, $2¹$ delivering, after ring-opening of the initially formed semiaminal, the ketone **21a** in good 86% yield. Acidic

⁽¹⁵⁾ Breuning, M.; Steiner, M. *Synthesis* **2007**, 1702.

⁽¹⁶⁾ Breuning, M.; Steiner, M. *Tetrahedron: Asymmetry* **2008**, *19*, 1978. (17) Breuning, M.; Winnacker, M.; Steiner, M. *Eur. J. Org. Chem.* **2007**, 2100.

⁽¹⁸⁾ The epimers of **13** are easily separable by column chromatography. Ring closure of the cis-configured derivative (2*R*,6*S*)-**13** to the bispidin-2-one **14** occurred at rt in 99% yield, the trans-isomer (2*S*,6*S*)-**13** cyclized in refluxing toluene (92% yield).

⁽¹⁹⁾ Ward, R. S.; Pelter, A.; Goubet, D.; Pritchard, M. C. *Tetrahedron: Asymmetry* **1995**, *6*, 469.

⁽²⁰⁾ For a related protocol starting from achiral 2,4,6,8-tetraoxobispidine, see: (a) Blakemore, P. R.; Kilner, C.; Norcross, N. R.; Astles, P. C. *Org. Lett.* **2005**, *7*, 4721. (b) Norcross, N. R.; Melbardis, J. P.; Solera, M. F.; Sephton, M. A.; Kilner, C.; Zakharov, L. N.; Astles, P. C.; Warriner, S. L.; Blakemore, P. R. *J. Org. Chem.* **2008**, *73*, 7939.

⁽²¹⁾ For additions of organometallic reagents to *N*-Boc-activated piperidines, see: (a) Williams, G. D.; Pike, R. A. *Org. Lett.* **2003**, *5*, 4227. (b) Giovannini, A.; Savoia, D.; Umani-Ronchi, A. *J. Org. Chem.* **1989**, *54*, 228. (c) Wei, B.-G.; Chen, J.; Huang, P.-Q. *Tetrahedron* **2006**, *62*, 190. (d) Harrison, T. J.; Kozak, J. A.; Corbella-Pane, M.; Dake, G. R. *J. Org. Chem.* **2006**, *71*, 4525. (e) Williams, G. D.; Wade, C. E.; Wills, M. *Chem. Commun.* **2005**, 4735.

cleavage of the *N*-Boc group followed by base-induced cyclization gave the imine **22a**, which was hydrogenated and *N*methylated to provide the target diamine **7a**. In agreement with known reductions and nucleophilic alkylations of bispidinederived imines,²² the hydrogenation of 22a occurred highly stereoselectively from the less hindered *exo*-face thus leading to the exclusive formation of the *endo*-substituted isomer **7a**. The 2-*endo*-phenyl derivative **7b**¹⁵ was prepared analogously in 47% overall yield from **8**.

The tricyclic 9-oxabispidine **6**¹⁶ was accessed by using a slightly modified sequence (Scheme 4). Reaction of **8** with TBSO(CH2)4MgBr and *O*-deprotection afforded the ketone **23**, which exists in a 20:40:40 ratio with its two diastereomeric lactol isomers **24A** and **24B**. Hydroxy/chlorine exchange, acidic removal of the *N*-Boc protective group, and filtration through basic aluminum oxide furnished, probably via the imine **25**, the iminium salt **26**, the structure of which was fully established by two-dimensional NMR measurements. Final reduction with NaBH4 in methanol delivered **6** in 35% overall yield, again with full stereocontrol.

As exemplified by the preparations of **7a**,**b** and **6**, the imide **8** is well-suited as a late-stage intermediate, from which a variety of bi- and tricyclic 9-oxabispidines with different 2-*endo*substituents or 2-*endo*-fused rings should be accessible.

The potential of the 9-oxabispidines as chiral ligands in asymmetric synthesis was studied on the Pd(II)-catalyzed oxidative kinetic resolution of the secondary alcohols **27** and **28** (Table 1) with conditions $A-C$ developed by Stoltz et al.^{3,6} for the analogous $(-)$ -sparteine-catalyzed reactions.²³ Even though only low enantiomer differentiations were found under conditions A with 1-indanol (*rac*-**27**) and 1-(4-methoxyphenyl)ethanol (*rac*-**28a**) as the substrates, the results clearly showed that the tricyclic 9-oxabispidine **6** is superior to the bicyclic 9-oxabispidines **7a** and **7b**. ²⁴ Good to excellent selectivity factors s^{25} of up to 19 were achieved applying conditions C, in which the preformed Pd(II)-complex **29** (Figure 2), prepared from 6 and $[Pd(MeCN)₂Br₂]$, in combination with some additional ligand **6** was used as the catalytic system. The enantioselective oxidation of *rac*-**28a**, for example, delivered the alcohol (*R*)-**28a** in 99.4:0.6 er after 20 h at 63% conversion and in 33% isolated yield. In this case, the high selectivity factor of $s = 19$ is fully in the range of those obtained with $(-)$ -

(24) The only other application of a chiral bicyclic bispidine (**2**, R-R2 = Me) in asymmetric synthesis was reported by Kozlowski et al.^{9a} Low 33% ee was achieved in the enantioselective deprotonation of *N*-Boc pyrrolidine.

SCHEME 4. Final Stages to the Tricyclic 9-Oxabispidine 6 TABLE 1. Oxidative Kinetic Resolution of the Alcohols 27 and 28 in the Presence of the 9-Oxabispidines 6 and 7

a Conditions A: Pd(nbd)Cl₂ (5 mol %), 6 or 7 (20 mol %), O₂ (1 bar), mol sieves 3 Å , toluene, $60-80 \text{ °C}$. Conditions B: Pd(nbd)Cl₂ (5 mol %), **6** (12 mol %), O_2 (1 bar), Cs_2CO_3 , mol sieves 3 Å, CHCl₃, rt. Conditions C: 29 (5 mol %), 6 (7 mol %), O_2 (1 bar), Cs₂CO₃, mol sieves 3 Å, CHCl₃, rt. ^{*b*} Determined by ¹H NMR. ^{*c*} Determined by HPLC on the chiral phase. ^{*d*} Reference selectivity factors (ligand, conditions):^{3,6,26} **27**: $s = 10$ (**1**, B), $s = 6.8$ (**3**, A); **28a**: $s = 17$ (**1**, C), *s* $= 19$ (**3**, C); **28b**: $s = 15$ (**1**, B); **28c**: $s = 28$ (**1**, C), $s = 25$ (**3**, C); **28d**: $s = 20$ (**1**, C).

FIGURE 2. The chiral PdBr₂ complex 29 and the isomer 30.

sparteine $(1, s = 17)^6$ and the bispidine **3** $(s = 19)^6$ as the chiral ligands. Lower differentiations were observed for **²⁷** and **28b**-**^d** $(s = 6.4-12).$

According to quantum chemical studies, 5 a cationic species is involved in the rate-limiting step of the catalytic cycle, the β -hydride shift from the complexed alcohol to the Pd-metal. Since this process is facilitated by a stronger electron-donating ligand, the lower reaction rates (factor $5-10$), observed with 6 as compared to **1** and **3**, might be a consequence of a reduced basicity of the 9-oxabispidine, caused by the electron-withdrawing oxygen atom in the bridge. This assumption is supported by the calculated²⁷ basicity of **6** ($pK_{\text{a,calcd}} = 19.5$), which is more than two pK_a units lower than these of 1 ($pK_{a,\text{calcd}} = 21.7$, $pK_{a,exp,MeCN} = 22.1$) and **3** ($pK_{a,calcd} = 21.9$).²

The coupling constants found in the ${}^{1}H$ NMR data of the catalyst **29** strongly support the desired *N*,*N*-complexation of the chiral ligand **6** (chair-chair conformation) to the Pd-metal,

^{(22) (}a) Harrison, J. R.; O'Brien, P. *Tetrahedron Lett.* **2000**, *41*, 6167. (b) Blakemore, P. R.; Norcross, N. R.; Warriner, S. L.; Astles, P. C. *Hetreocycles* **2006**, *70*, 609. (c) References 9b and 20.

⁽²³⁾ For a recent study on 9-bispidinones as the ligands, see: Lesma, G.; Pilati, T.; Sacchetti, A.; Silvani, A. *Tetrahedron: Asymmetry* **2008**, *19*, 1363.

⁽²⁵⁾ The selectivity factor *s* is defined as $s = k_{\text{fast}}/k_{\text{slow}} = \ln[(1-C)(1-\text{ee})]$ / $ln[(1 - C)(1 + ee)]$, where *C* is the conversion.

^{(26) (}a) Dearden, M. J.; Firkin, C. R.; Hermet, J.-P. R.; O'Brien, P. *J. Am. Chem. Soc.* **2002**, *124*, 11870–11871. (b) Reference 11a.

⁽²⁷⁾ All calculated structures were optimized with the TURBOMOLE program package on the B3LYP//BLYP-RI level of theory, employing the TZVP basis set. Solvent effects were taken into account by using the COSMO solvent model ($\epsilon = 36.64$). For details, see the Supporting Information.

⁽²⁸⁾ pK_a values refer to the acidities of the protonated (9-oxa)bispidines. They were calculated by using a method established by Gogoll et al., see: Toom, L.; Kütt, A.; Kaljurand, I.; Leito, I.; Ottosson, H.; Grennberg, H.; Gogoll, A. *J. Org. Chem.* **2006**, *71*, 7155.

IOC Note

although, a priori, an *N*,*O*-ligation of **6** (boat-chair conformation) as in **30** cannot fully be excluded (Figure 2). The large difference in the calculated²⁷ heats of formation $[\Delta H_f = H_f(29) - H_f(30)]$ $= -43.9 \text{ kJ mol}^{-1}$], however, makes a competing *N*,*O*-chelation
as in 30 very unlikely as in **30** very unlikely.

In conclusion, a novel enantioselective approach to 9-oxabispidines has been developed. Using the *N*-Boc-activated 9-oxabispidin-2-one **8** as the key intermediate, a flexible introduction of substituents in the 2-*endo* position was possible via a 4-5 step sequence, as demonstrated in the preparation of the bicyclic derivatives **7a** and **7b** and the tricycle **6**. This route will permit efficient access to a broader variety of interesting derivatives for further structure-selectivity investigations. In the oxidative kinetic resolution of secondary alcohols, selectivity factors of up to 19 have been achieved with the tricyclic 9-oxabispidine **6**. The prolonged reaction times, as compared to **1** and **3** as the chiral ligands, are probably a consequence of the electron-withdrawing oxygen atom in **6**.

Experimental Section

The following preparation of **7a** from **8** is representative. **(2***R***,6***R***)-6-***tert***-Butoxycarbonylaminomethyl-4-methyl-2-propionylmorpholine (21a).** EtMgBr (466 μ L, 1.4 mmol, 3.0 M in Et₂O) was added at -78 °C to a solution of **8** (300 mg, 1.17 mmol) in anhydrous THF (20 mL). After 12 h at -78 °C, the reaction mixture was quenched with saturated aqueous NH4Cl (20 mL) and water (80 mL) and extracted with EtOAc (4 \times 60 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. Column chromatography (silica gel, Et₂O/MeOH 1:0 \rightarrow 9:1) delivered **21a** (288 mg, 1.01 mmol, 86%) as a yellowish oil. $[\alpha]^{22}$ $+41$ 4 (c 0.15 in CH₂Cl₂) ¹H NMR (400 MHz CDCl₂) δ 1.02 (t $+41.4$ (*c* 0.15 in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 1.02 (t, 3H $I = 7.3$ Hz CH₂Me) 1.44 (s 9H CMe₂) 1.79 (td $I = 11.0$) 3H, $J = 7.3$ Hz, CH₂Me), 1.44 (s, 9H, CMe₃), 1.79 (td, $J = 11.0$, 3.7 Hz, 2H, 3-H_{ax}, 5-H_{ax}), 2.29 (s, 3H, NMe), 2.60 (q, $J = 7.3$ Hz, 2H, CH₂Me), 2.70 (d, $J = 11.3$ Hz, 1H, 5-H_{eq}), 2.98 (br d, $J =$ 11.3 Hz, 1H, 3-Heq), 3.16 (m, 1H, 6-C*H*H), 3.34 (m, 1H, 6-CH*H*), 3.65 (m, 1H, 6-H), 4.04 (dd, $J = 11.0, 2.7$ Hz, 1H, 2-H), 4.88 (br s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃) δ 6.9 (CH₂*Me*), 28.4 (CMe₃), 31.8 (CH₂Me), 43.0 (6-CH₂), 46.0 (NMe₃), 55.7 (C-3), 56.9 (C-5), 75.3 (C-6), 79.5 (CMe₃), 80.8 (C-2), 155.9 (CO₂), 209.5 (COEt). IR (film) 3361, 2978, 2939, 2800, 1715, 1523, 1467, 1366, 1252, 1173, 1117 cm⁻¹. HRMS (ESI) calcd for $[C_{14}H_{26}N_2O_4 + H_1^+$ 287 1965 found 287 1966 H]⁺ 287.1965, found 287.1966.

(1*R***,2***S***,5***S***)-2-Ethyl-3,7-dimethyl-9-oxa-3,7-diazabicyclo[3.3.1] nonane (7a).** A solution of the morpholine $21a$ (260 mg, 908 μ mol) in TFA (2 mL) was stirred for 4.5 h at 0 °C. NaOH (11 N, 50 mL) was added and the reaction was warmed to rt within 15 min. After extraction with Et₂O (3 \times 100 mL), the combined organic layers were washed with brine (100 mL), dried over $Na₂SO₄$, and evaporated. Concentrated HCl (3 mL) and Pd(OH) $_2$ /C (20 w/w %,

120 mg) were added to the residue dissolved in EtOH (30 mL). The reaction mixture was hydrogenated for 20 h under 1 bar of H_2 pressure. The crude product was sucked through a pad of Celite, washed with MeOH (150 mL), and concentrated under reduced pressure. The residue was dissolved in $H₂O$ (30 mL) and the pH was adjusted to 11 with 1 N NaOH (ca. 40 mL). After extraction with CHCl₃ (5 \times 60 mL), the combined organic layers were dried over Na2SO4. Removal of the solvent in vacuo yielded the *N*-demethylated precursor of **7a** (122 mg, 717 *µ*mol, 79%) as a brownish oil. $[\alpha]^{22}$ _D -1.4 (*c* 0.27 in MeOH). ¹H NMR (400 MHz,
CD₂OD) δ 0.97 (t *I* = 7.5 Hz 3H CH₂Me) 1.41 (m 2H CH₂Me) CD₃OD) δ 0.97 (t, *J* = 7.5 Hz, 3H, CH₂*Me*), 1.41 (m, 2H, CH₂Me), 2.15 (s, 3H, NMe), 2.36 (ddd, $J = 11.9, 3.6, 1.4$ Hz, 1H, 8-H), 2.45 (m, 1H, 6-H), 2.95 (m, 4H, 2-H, 4-H, 6-H, 8-H), 3.15 (ddd, *J* = 13.8, 3.9, 2.5 Hz, 1H, 4-H), 3.56 (t, *J* = 3.3 Hz, 1H, 1H), 3.64 (t, $J = 3.8$ Hz, 1H, 5-H). ¹³C NMR (100 MHz, CD₃OD) δ 10.9 (CH2*Me*), 27.0 (*C*H2Me), 47.1 (NMe), 50.9 (C-4), 56.1 (C-8), 60.6 (C-6), 60.7 (C-2), 68.6 (C-5), 71.4 (C-1). IR (film) 3300, 2933, 2789, 1460, 1269, 1210, 1078, 846 cm-¹ . HRMS (ESI) calcd for $[C_9H_{18}N_2O + H]^+$ 171.1492, found 171.1494.

The 9-oxabispidine prepared above (100 mg, 587 *µ*mol) was dissolved in CH₂Cl₂ (10 mL) and treated at rt with K_2CO_3 (162) mg, 1.17 mmol) and MeI (36.5 *µ*L, 83.3 mg, 587 *µ*mol). After 6 h at rt, 1 N NaOH (50 mL) and brine (50 mL) were added and the reaction mixture was extracted with CHCl₃ (3 \times 75 mL). The combined organic layers were dried over $MgSO₄$ and the solvent was removed in vacuo. Column chromatography (basic Al_2O_3 , activity V, EtOAc/MeOH 1:0 → 0:1) gave **7a** (69.1 mg, 375 μ mol, 64%) as a colorless oil. $\left[\alpha\right]_{D}^{2} + 32.1$ (*c* 0.27 in MeOH). ¹H NMR (400 MHz CD₂OD) δ 0.90 (t $I = 7.6$ Hz 3H CH₂Me) 1.28 (m) (400 MHz, CD₃OD) *δ* 0.90 (t, *J* = 7.6 Hz, 3H, CH₂*Me*), 1.28 (m, 1H, C*H*HMe), 1.91 (m, 1H, CH*H*Me), 2.15 (s, 3H, NMe), 2.18 (s, 3H, NMe), 2.23 (m, 2H, 8-H, 2-H), 2.38 (dd, $J = 11.4$, 2.5 Hz, 1H, 6-H), 2.55 (dd, $J = 11.8$, 4.2 Hz, 1H, 4-H), 2.84 (d, $J = 11.8$ Hz, 2H, 4-H, 6-H), 2.95 (d, $J = 12$ Hz, 1H, 8-H), 3.72 (t, $J = 3.7$ Hz, 1H, 1-H), 3.82 (t, $J = 4.0$ Hz, 1H, 5-H). ¹³C NMR (100 MHz, CD3OD) *δ* 10.6 (CH2*Me*), 23.3 (*C*H2Me), 44.4 (3-Me), 47.1 (7- Me), 54.8 (C-8), 59.5 (C-6), 60.4 (C-4), 68.5 (C-2), 69.7 (C-5), 71.1 (C-1). IR (ATR) 2940, 2800, 1676, 1460, 1176, 1130, 1092, 801 cm⁻¹. HRMS (ESI) calcd for $[C_{10}H_{20}N_2O + H]^+$ 185.1648, found 185.1648 found 185.1648.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft DFG (Emmy-Noether fellowship to M.B.) and Chemetall.

Supporting Information Available: Experimental procedures and quantum chemical calculations, as well as characterization data and NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO802409X